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Abstract: Recent algorithms allow decentralised agents, possibly connected via a communication
network, to learn equilibria in mean-field games from a single game with an empirical population
and no episodic resets. However, these algorithms are for tabular settings: this computationally limits
the size of agents’ observation space, meaning the algorithms cannot handle anything but small state
spaces, nor generalise beyond policies depending only on the agent’s local state to so-called “population-
dependent’ policies. We address this limitation by introducing function approximation to the existing
setting, drawing on the Munchausen Online Mirror Descent method that has previously been employed
only in finite-horizon, episodic, centralised settings. While this permits us to include the mean field
in the observation for players’ policies, it is restrictive to assume decentralised agents have access to
this global information: we thus also provide new algorithms allowing agents to locally estimate the
global empirical distribution, and to improve this estimate via inter-agent communication. We show
theoretically that exchanging policy information helps networked agents outperform both independent
and even centralised agents in function-approximation settings. Our experiments demonstrate this
empirically, by an even greater margin than in tabular settings, and show that the communication
network allows decentralised agents to estimate the mean field for population-dependent policies.

Keywords: mean-field games; deep reinforcement learning; networked communication

1. Introduction

The mean-field game (MFG) framework [1,2] can be used to address the difficulty faced by
multi-agent reinforcement learning (MARL) regarding computational scalability as the number of
agents grows [3,4]. It models a representative agent as interacting not with other individual agents
in the population on a per-agent basis, but instead with a distribution over the other agents, called
the mean field. The MFG framework analyses the limiting case when the population consists of an
infinite number of symmetric and anonymous agents, that is, they have identical reward and transition
functions which depend on the mean-field distribution rather than on the actions of specific other
players. The solution to this game is the mean-field Nash equilibrium (MFNE), which can be used as
an approximation for the Nash equilibrium (NE) in a finite-agent game (which is harder to solve in
itself), with the error in the solution reducing as the number of agents N tends to infinity [5-10]. MFGs
have thus been applied to a wide variety of real-world and game scenarios: see [11] for examples.

Recent works argue that classical algorithms for solving MFGs rely on assumptions and methods
that are likely to be restrictive in realistic multi-agent games, such as large-scale strategy or simulation-
based games, emphasising that desirable qualities for such MFG algorithms include: learning from
the empirical distribution of N agents (i.e. this distribution is generated only by the policies of the
in-game agents, rather than being updated by the algorithm itself or an external oracle); learning on
the fly from a single, continued, non-episodic game (i.e. where the population/environment cannot
be arbitrarily reset, as in persistent-world or real-time games); model-free learning; decentralisation;
and fast practical convergence [12,13]. While these works address these desiderata, they do so only in
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settings in which the state and action spaces are small enough that the Q-function can be represented
by a table, limiting scalability and applicability to complex games.

Moreover, in those works, as in many others on MFGs, agents only observe their local state
as input to their Q-function (which defines their policy). This is sufficient when the solved MFG is
expected to have a stationary distribution (‘stationary MFGs’) [6,11-15]. However, in reality there are
numerous reasons for which agents may benefit from being able to respond to the current distribution.
Recent work has thus increasingly focused on these more general settings where it is necessary for
agents to have so-called ‘master policies’ (a.k.a. population-dependent policies) which depend on both
the mean-field distribution and their local state [11,11,16-20].

The distribution is a large, high-dimensional observation object, taking a continuum of values.
Therefore a population-dependent Q-function cannot be represented exactly in a table and must be
approximated. To address these limitations while maintaining the desiderata for realistic multi-agent
games given in recent works, we introduce function approximation to the MFG setting of decentralised
agents learning on the fly from a single, continued run of the empirical game without episodic resets,
allowing this setting to handle larger state spaces and to accept the mean-field distribution as an
observation input.To overcome the difficulties of training non-linear approximators in this context, we
use the so-called ‘Munchausen’ trick, introduced by [21] for single-agent RL, and extended to MFGs
by [20], and to MFGs with population-dependent policies by [19].

We particularly explore this in the context of networked communication between decentralised
agents [13]. We demonstrate that communication brings two specific benefits over the purely indepen-
dent setting (while also removing the undesirable assumption of a centralised learner, which in realistic
game settings may be restrictive, a computational bottleneck and a vulnerable single point of failure).
Firstly, when the Q-function is approximated rather than exact, some updates lead to better performing
policies than others. Allowing networked agents to propagate better performing policies through the
population leads to faster learning than in the purely independent case and often even than in the
centralised case, as we show both theoretically and empirically (this method is reminiscent of the use
of fitness functions in distributed evolutionary algorithms [22,23]). Secondly, we argue that in realistic
settings it is restrictive to assume that decentralised agents, endowed with local state observations and
limited (if any) communication radius, would be able to observe the global mean-field distribution
and use it as input to their Q-functions / policy. We therefore further contribute two setting-dependent
algorithms by which decentralised agents can estimate the global distribution from local observations,
and further improve their estimates by communication with neighbours.

We focus on ‘coordination’ games, where agents can increase their individual rewards by following
the same strategy as others and therefore have an incentive to communicate policies, even if the MFG
setting itself is technically non-cooperative.! In summary, our contributions are:

e  We introduce function approximation to MFG settings with decentralised agents for the first time.

—  To do this, we use Munchausen RL for the first time in an infinite-horizon MFG context (cf.
[19,20]). This also constitutes the first use of function approximation for solving MFGs from
a single, non-episodic game with the empirical population (for tabular settings see [12,13]).

e  Function approximation allows us to explore larger state spaces, and also settings where agents’
policies depend on the mean-field distribution as well as their local state.

e  Rather than assuming that agents have access to this global knowledge as in prior works, we
present two additional novel algorithms allowing decentralised agents to locally estimate the
empirical distribution and to improve these estimates by inter-agent communication.

e We show theoretically that networked agents may learn faster than both centralised and indepen-
dent agents in the function-approximation setting.

We further preempt concerns about the appropriateness of communication in competitive settings by wondering whether
self-interested agents would be any more likely to want to obey a central learner as has usually been assumed. Moreover we
show that self-interested communicating agents can obtain higher returns than independent agents even in non-coordination
games (Fig. A3), indicating that they do have incentive to communicate.
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*  Our extensive experiments support the two benefits of the decentralised communication scheme,
which significantly outperforms both the independent and centralised settings.

Paper structure: Preliminaries are in Sec. 2 and our core learning and policy improvement algorithm
is in Sec. 3. We present our mean-field estimation and communication algorithms in Sec. 4, theoretical
results in Sec. 5 and experiments in Sec. 6. Appx. G contains an extended ‘Related work’ section.

2. Preliminaries
2.1. Mean-field games

We use the following notation. N is the number of agents in a population, with S and A
representing the finite state and common action spaces, respectively. The set of probability measures
on a finite set X" is denoted Ay, and ey € Ay for x € X is a one-hot vector with only the entry
corresponding to x set to 1, and all others set to 0. For time t > 0, fi; = % Zfil Yses ]lsi:ses €Agisa
vector of length |S| denoting the empirical categorical state distribution of the N agents at time . For
agenti € 1...N, i’s policy at time t depends on its observation oi. We explore three different forms
that this observation object can take:

e Inthe conventional setting, the observation is simply i’s local state s}, such that 7t (a|o}) = 7' (als!).

*  When the policy is population-dependent, if we assume perfect observability of the global mean-
field distribution then we have o} = (si, f1¢).

*  Itis restrictive to assume that decentralised agents with a possibly limited communication radius
can observe the global mean field, so we allow agents to form a local estimate fii which can be
improved by communication with neighbours. Here we have o} = (s}, fil).

In the following definitions we focus on the population-dependent case when o} = (s, f1;), and
clarify afterwards the connection to the other observation cases. Thus the set of policies is [T = {7 :
S x As — A4}, and the set of Q-functions is denoted Q = {7: S x Ag x A — R}.

Definition 1 (N-player symmetric anonymous games). An N-player stochastic game with symmetric,
anonymous agents is given by the tuple (N, S, A, P, R, «y), where A is the action space, identical for each agent;
S is the identical state space of each agent, such that their initial states are {si}Y | € SN and their policies are
{71"}1‘:1 €IV, P: S x A x Ag — Ag is the transition functionand R : S x A x Ag — [0,1] is the reward
function, which map each agent’s local state and action and the population’s empirical distribution to transition
probabilities and bounded rewards, respectively, i.e. Vi: 5i+1 ~ P(-|si,ai, fit) and ri = R(sé, ai,ﬁt).

At the limit as N — oo, the infinite population of agents can be characterised as a limit distribution
i € Ag; the infinite-agent game is termed an MFG. The so-called ‘mean-field flow” u is given by the
infinite sequence of mean-field distributions s.t. g =(tt)>0.

Definition 2 (Induced mean-field flow). We denote by I(7) the mean-field flow p induced when all the
agents follow 7t, where this is generated from 1t as follows: pyy1(s'") = Yg , pe(s)w(als, ut)P(s'|s, a, py).

When the mean-field flow is stationary such that the distribution is the same for all t, i.e. yy = ps4+1
Vt > 0, the policy 7t*(alsi, 1) need not depend on the distribution, such that 7’ (alsi, ;) = 7' (alst), i.e.
we recover the classical population-independent policy. However, for such a population-independent
policy the initial distribution y¢ must be known and fixed in advance, whereas otherwise it need not
be. We also give the following definitions.

Definition 3 (Mean-field discounted return). In a MFG where all agents follow policy 7t giving a mean-field
flow p = (¢ ) >0, the expected discounted return of the representative agent is given by

S0~Ho
ap~re(-lsepe) |

o)

Y v (R(st at, pit))

t=0

V(m,u) =E

str1~P(:[st.arpt)
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Definition 4 (Best-response (BR) policy). A policy 7t* is a best response (BR) against the mean-field flow p if
it maximises the discounted return V (-, u); the set of these policies is denoted BR (), i.e.

" € BR(p) := argmax V (7, p).
T

Definition 5 (Mean-field Nash equilibrium (MFNE)). A pair (7t*, u*) is a mean-field Nash equilibrium
(MFENE) if the following two conditions hold:

e 7% isa best response to u*, i.e. T* € BR(p*);

e u*isinduced by T*, i.e. u* = I(7T*).

7r* is thus a fixed point of the map BRo I, ie. m* € BR(I(7r*)). If a population-dependent policy
is a MENE policy for any initial distribution py, it is a ‘master policy’.

Previous works have shown that, in tabular settings, it is possible for a finite population of
decentralised agents (each of which is permitted to have a distinct population-independent policy 7t)
to learn the MFNE using only the empirical distribution fi;, rather than the exactly calculated infinite
flow pu [12,13]. This MFNE may be the goal in itself, or it can in turn serve as an approximate NE for the
harder-to-solve game involving the finite population. In this work we provide algorithms to perform
this process in non-tabular and population-dependent settings, and demonstrate them empirically.

2.2. (Munchausen) Online Mirror Descent

Instead of performing the computationally expensive process of finding a BR at each iteration,
we can use a form of policy iteration for MFGs called Online Mirror Descent (OMD). This involves
beginning with an initial policy 77y, and then at each iteration k, evaluating the current policy 7, with
respect to its induced mean-field flow u = I(7y) to compute its Q-function Q. To stabilise the
learning process, we then use a weighted sum over this and past Q-functions, and set 7, to be the
softmax over this weighted sum, i.e. 71, 1(|s, u) = softmax (Tiq YK 0 Quls, 1, )) T is a temperature
parameter that scales the entropy in Munchausen RL [21]; note that this is a different temperature to
the one agents use when selecting which communicated parameters to adopt, denoted 7" (Sec. 3.2).

If the Q-function is approximated non-linearly, it is hard to compute this weighted sum. The
‘Munchausen trick” addresses this by computing a single Q-function that mimics the weighted sum
using implicit regularisation based on the Kullback-Leibler (KL) divergence between 7y and 7ty 1 [21].
This reparametrisation gives Munchausen OMD (MOMD), detailed further in Sec. 3.1 [19,20]. MOMD
does not bias the MFNE and has the same convergence guarantees as OMD [19,24,25].

2.3. Networks

Definition 6 (Time-varying network). The network {Gt}y>q is given by Gy = (N, &), where N is the set of
vertices each representing an agent i, and the edge set & C {(ij) : i,j € N} is the set of undirected links present
at time t. A network’s diameter dg, is the maximum of the shortest path length between any pair of nodes.

We conceive of the finite population as exhibiting two such networks. One of them, G{*"", defines
which agents can communicate information to each other at t. The second network G¢% is a graph
defining which agents can observe each other’s states, which we use in general settings for estimating
the mean-field distribution from local information. The structure of the two networks may be identical
(e.g. if agents that are located in physical space can both observe the position (state) of, and exchange
information with, other agents within a certain physical distance from themselves), or different (e.g.
if agents can observe the positions of nearby agents, but only exchange information with agents by
which they are linked via radio/satellite, which may connect agents over long distances).

We also define an alternative version of the observation graph that is useful in a specific subclass
of environments, which can most intuitively be thought of as those where agents’ states are positions
in physical space. When this is the case, we usually think of agents’ ability to observe each other as
depending more abstractly on whether states are visible to each other. We define this visibility graph:
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Definition 7 (Time-varying state-visibility graph). The state-visibility graph {G{™ };>q is given by GI* =
(S',E75), where S' is the set of vertices representing the environment states S, and the edge set E' C {(m,n) :
mn € S'}is the set of undirected links present at time t, indicating which states are visible to each other.

We view an agent in s as able to obtain a count of the number of agents in s’ if s’ is visible to
s. The benefit of this graph G/ over G?%* is that there is mutual exclusivity: either an agent in state
s is able to obtain a total count of all of the agents in state s’ (if s’ is visible to s), or it cannot obtain
information about any agent in state s’ (if those states are not visible to each other). Additionally, this
graph permits an agent in state s to observe that there are 10 agents in state s’ as long as s’ is visible
to s. These benefits are not available if the observability graph is defined strictly between agents as
in gfhs , such that using G/ is facilitates more efficient estimation of the global mean-field distribution

from local information in settings where G is applicable (see Sec. 4).

3. Learning and policy improvement
3.1. Q-network and update

Lines 1-14 of our novel Alg. Al (Appx. A) contain the core Q-function/policy update method.
Agent i has a neural network parametrised by 9;; to approximate its Q-function: Qvgl,-( (0,-). The agent’s

policy is given by 4 (alo) = softmax(%quei (o, )) (a). We denote the policy 7i(alo) for simplicity
when appropriate. Each agent maintains a buffer (of size M) of collected transitions of the form
(oi, ai, rg, oi +1) . At each iteration k, they empty their buffer (Line 3) before collecting M new transitions
(Lines 4-7); each decentralised agent i then trains its Q-network le,-( via L training updates as follows

(Lines 8-12). For training purposes, i also maintains a target network Q g/ With the same architecture
k1

but parameters 9;'(’,,1 copied from 9};’1 less regularly than 9;'(,1 themselves are updated, i.e. only every v
learning iterations (Line 11). At each iteration /, agent i samples a random batch B; ; of |B| transitions
from its buffer (Line 9), and trains its neural network via stochastic gradient descent to minimise the
empirical loss (Def. 8, Line 10). For ¢/ < 0, [-]% is a clipping function used in Munchausen RL to
prevent numerical issues if the policy is too close to deterministic [19,21]:

2

7

Definition 8 (Q-network empirical loss). This is given by £(6,0') = TB] Y ransitione B lef( [ (ot,at) =T

where the target is T = r; + [1;In nei/l (at|ot)]gl + Y 0eu 7191,-(/1 (alos41) (Qveli,/l(otﬂ,a) —Tyln 7T91i<’,1 (a|ot+1)>.

3.2. Communication and adoption of parameters

We use the communication network G;°"" to share two types of information at different points
in Alg Al. One is used to improve local estimates of the mean-field distribution (see Sec. 4). The
other, described here, is used to privilege the spread of better performing policy updates through the
population, allowing faster convergence in this networked case than in the independent and even
centralised cases. We adapt the work in [13] for the function-approximation case, where in our work
agents broadcast the parameters of the Q-network that defines their policy, rather than the Q-function
table. At each iteration k, after independently updating their Q-network and policy (Lines 3-14), agents
approximate the infinite discounted return (Def. 3) of their new policies by collecting rewards for E steps,
and assign the finite-step discounted sum to U]i 41 (Lines 15-20). They then broadcast their Q-network
parameters along with o, ; (Line 22). Receiving these from neighbours on the network, agents select
which set of parameters to adopt by taking a softmax over their own and the received estimate values
‘71]< 1 (Lines 23-25). They repeat the process for Cp rounds. This allows decentralised agents to adopt
policy parameters estimated to perform better than their own, accelerating learning as shown in Sec. 5.
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4. Mean-field estimation and communication

We describe here the most general version of our algorithm for decentralised estimation of the
empirical categorical mean-field distribution, assuming the more general setting where G?%* applies
(see discussion in Sec. 2.3). In Appx. C, we detail how the algorithm can be made more efficient in
environments where the more abstract visibility graph G7** applies, as in our experimental settings. In
both cases, the algorithm runs to generate the observation object when a step is taken in the main Alg.
Al, ie. to produce o} = (si, i) for the steps a} ~ 7t.(-|o}) in Lines 5, 17 and 26. Both versions of the
algorithm are subject to implicit assumptions, which we discuss methods for addressing in Appx. H.

In the general setting, our method (Alg. A2, Appx. B) assumes each agent is associated with
a unique ID to avoid the same agents being counted multiple times. Each agent maintains a ‘count’
vector 0! of length |S| i.e. of the same shape as the vector denoting the true empirical categorical
distribution of agents. Each state position in the vector can hold a list of IDs. Before any actions are
taken at each time step f, each agent’s count vector ¢! is initialised as full of @ (‘no count’) markers
for each state (Line 1). Then, for each agent j with which agent i is connected via the observation
graph, i places j’s unique ID in its count vector in the correct state position (Line 2). Next, for C, > 0
communication rounds, agents exchange their local counts with neighbours on the communication
network (Line 4), and merge these counts with their own count vector, filtering out the unique IDs
of those that have already been counted (Line 6). If C, = 0 then the local count will remain purely
independent. By exchanging these partially filled vectors, agents are able to improve their local counts
by adding the states of agents that they have not been able to observe directly themselves.

After the C, communication rounds, each state position o [s] either still maintains the @ marker if
no agents have been counted in this state, or contains x; > 0 unique IDs. The local mean-field estimate
fil is then obtained from ¢} as follows. All states that have a count x; have this count converted into
the categorical probability x; /N (we assume that agents know the total number of agents in the finite
population, even if they cannot observe them all at each ) (Line 11). The total number of agents
counted in 0! is given by counted_agents = Y 45 x5, and the agents that have not been observed are
uncounted_agents = N - counted_agents. In this general setting, the unobserved agents are assumed
to be uniformly distributed across all the states, so uncounted_agents/(N x |S|) is added to all the
values in ]ft’t, replacing the @ marker for states for which no agents have been observed (Line 10).

5. Theoretical results

To demonstrate the benefits of the networked architecture by comparison, we also consider
(theoretically here and experimentally in Sec. 6) the results of modified versions of our algorithm for
centralised and independent learners. In the centralised setting, the Q-network updates of arbitrary
agent i = 1 are automatically pushed to all other agents, and the true global mean-field distribution
is always used in place of the local estimate i.e. fii = fi;. In the independent case, there are no links
in GO or GYS, j.e. £ = £V = @. Networked agents often learn faster than centralised ones
in our experiments; we justify theoretically this possibly counterintuitive result here. We first make
two relatively strong assumptions that give conditions under which networked agents do outperform
centralised ones. The fact that these strong assumptions do not always hold in practice explains why
networked agents may not always outperform centralised ones.

Recall that at each iteration k of Alg. A1, after independently updating their policies in Line 14,
the population has the policies {n,i . }N . There is randomness in these independent policy updates,
stemming from the random sampling of each agent’s independently collected buffer. In Lines 15-20,
agents approximate the infinite discounted returns {V (7}, |, I(7};))}N, (Def. 3) of their updated
policies by computing {(7}; 1 }fi 1: the E-step discounted return with respect to the empirical mean field
generated when agents follow policies {7rfC +1}1I'\i ; (i.e. they do not at this stage all follow a single
identical policy). We can characterise the approximation as {0}, }V; = V(ri IR G ARD) R
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Assumption 1. Assume that { U,i “ 1, are sufficiently good approximations so as to respect the ordering of
the true values {V (7,1, 1(7, 1))}, de. Vi, j € {1,... N} oh > 01, < V(m,, 1(n}.,)) >

V(”]kﬂf I(”]kﬂ))'

Assumption 2. Assume that after the Cp rounds in Lines 21-27 in which agents exchange and adopt policies

from neighbours, the population is left with a single policy such that ¥i,j € {1,...,N} n,l;H = n{(_H.Z

Call the network consensus policy n,rc‘fl and its finitely approximated return (Tl?fl. Recall that

the centralised case is where the Q-network update of arbitrary agent i = 1 is automatically pushed

to all the others instead of the policy evaluation and exchange in Lines 15-27; this is equivalent to a

networked case where policy consensus is reached on a random one of the policies {n]i H}f\i 1- Call this
cent

1. and its finitely approximated return oent

policy arbitrarily given to the whole population 7t ol -

Theorem 1. Given Ass. 1 and 2, B[V (mpst, I(77$4))] > E[V(mg, I(mE))]. Thus in expectation

networked agents will increase their returns faster than centralised ones. Full proof in Appx. E.

Proof intuition. The adoption scheme in Line 24 biases the spread of policies towards those
estimated to be better, which, given sufficiently good approximations (Ass. 1), results in higher
discounted returns in practice. By choosing updates in a more principled way, networked agents learn
faster than the centralised case that adopts updates regardless of quality. This intuition applies even if
we loosen Ass. 2 that the networked population converges on a single consensus policy within the
Cp communication rounds. Similar logic can also be applied to understand why networked agents
outperform entirely independent ones, combined with the fact that divergence between policies in the
independent case worsens sample complexity over the networked and centralised cases by biasing
approximations of the Q-function [12,13]. Significantly, the communication scheme not only allows us
to avoid the undesirable assumption of a central learner, but even to outperform it.

6. Experiments

We provide two sets of experiments. The first set showcases that our function-approximation
algorithm (Alg. A1) can scale to large state spaces for population-independent policies, and that
in such settings networked, communicating agents can outperform purely-independent and even
centralised agents, and do so by an even greater margin than in the tabular settings from [13]. The
second set (given in Appx. F.4) demonstrates that Alg. Al can handle population-dependent policies,
as well as the ability of Alg. A3 to practically estimate the mean-field distribution locally.

For the types of game used in our demonstrations we follow the gold standard in prior MFG
works, i.e. grid-world environments where agents can move in the four cardinal directions or remain
in place [13,15,19,20,27-29]. In these spatial environments, both the communication network G
and the visibility graph G?’ are determined by the physical distance from agent i; we show plots for
various radii, expressed as fractions of the maximum possible distance (the grid’s diagonal length).

We present results from five games defined by the agents’ reward/transition functions, all but one
of which are coordination games. The first two are those used with population-independent policies
in [13], but while they show results for an 8x8 and a ‘larger” 16x16 grid, our results are for 100x100
and 50x50 grids: Cluster. Agents are rewarded for gathering but given no indication where to do so,
agreeing it over time. Target agreement. Agents are rewarded for visiting any of a given number of
targets, but the reward is proportional to the number of other agents co-located at the target; agents

2 Most simply we can think of Ass. 2 holding if 1) 7" — 0 Vk such that the softmax essentially becomes a max function, and

2) the communication network G is static and connected during the C,, communication rounds, where C,, is larger than
the network diameter dg'comm . Under these conditions, previous results on max-consensus algorithms show that all agents in
the network will converge on the highest 07"}’ value (and hence the unique associated 77}'f§ within a number of rounds equal
to the diameter dgfamm [13,26]. However, policy consensus as in Ass. 2 might be achieved even outside of these conditions,

including if the network is dynamic and not connected at every step, given appropriate values for C, and 777" € Ro.
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(a) ‘Target agreement” game. (b) ‘Cluster” game.

Figure 1. Population-independent policies, 100x100 grid.

must coordinate on which single target they will all meet at to maximise their individual rewards. See
Appx. E1 for a full technical description of these two games and of additional more complex ones.

We evaluate our experiments via two metrics. Exploitability is the most common metric in works
on MFGs, and is a measure of proximity to the MENE. It quantifies how much a best-responding agent
can benefit by deviating from the set of policies that generate the current mean-field distribution, with
a decreasing exploitability meaning the population is closer to the MFNE. However, there are several
issues with this metric in our setting, particularly for our coordination games where competitive
agents benefit from aligning behaviours, such that it may give limited or noisy information (discussed
further in Appx. F2.1). We thus also give a second metric, as in [13]: the population’s average discounted
return. This allows us to compare how quickly agents are learning to increase their returns, even when
‘exploitability” gives us limited ability to distinguish between the desirability of the MFNEs to which
populations converge. We discuss hyperparameters in Appx. F.3.

6.1. Results and discussion

Fig. 1 illustrates that introducing function approximation to algorithms in this setting allows them
to converge within a practical number of iterations (k < 100), even for large state spaces (100x100
grids). By contrast, the tabular algorithms in [13] appear only just to converge by k = 200 for the
same games for the larger of their two grids, which is only 16x16. In Fig. 1, networked agents all
significantly outperform both centralised and independent agents in term of average return, despite
the centralised agents appearing to have similar exploitability, and the independent agents having
similar or slightly lower exploitability. This is because independent agents (and also the centralised
ones in Fig. 1(a)) hardly improve their policies at all, so there is little a deviating agent can do to
increase its return in these coordination games, meaning exploitability appears low, despite this being
an undesirable equilibrium (see Appx. E2 for further discussion on the limited information provided
by the exploitation metric). The fact that the networked agents nevertheless significantly outperform
the other architectures in terms of average return indicates that communication helps agents to find
substantially “preferable’ equilibria. See Appx. F.4 for further experiments.

7. Conclusion

We novelly contributed function approximation to the setting of learning on the fly in empirical
MEGs, and also contributed two novel algorithms for locally estimating the empirical mean field for
population-dependent policies. We have justified theoretically why our networked communication
algorithm is able to learn faster than both centralised and independent agents in this function approxi-
mation setting, and demonstrated empirically the ability of our algorithms to handle large state spaces
and estimate the mean field. Limitations and ways to extend our algorithms are in Appx. H.
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Appendix A. Learning and communication algorithm
See Alg. Al.

Algorithm A1 Networked learning with non-linear function approximation

Require: loop parameters K, M, L, E, Cp,, learning parameters v, 75, |BJ,cl, v, {T]fo’”m}ke {0,... K1}
Require: initial states {sé}fi Lt 0
1: Vi : Randomly initialise parameters 6} of Q-networks Q% (0,-), and set 7(alo) =
1 X
softmax (?q Q% (o, )) (a)
2: fork=0,...,K—1do

3 Vi: Empty i’s buffer

4 form=0,...,M—1do

5: Take step Vi : al ~ 7t (-|0}), 7} = R(sk,al, fir), sk q ~ P(:|s}, a}, fuy); t + t+1
6: Vi: Add {i to i’s buffer

7. end for

8 forl=0,...,L—1do

9: Vi : Sample batch Bli,l from i’s buffer
10: Update 6 to minimise £(6,6’) as in Def. 8
11: Ifl] mod v=20,setd <0

12 end for 5
13: Q%l(o, ) QG};,L (0,°)
14 Vi:im (alo) « sof’cm.ax(quQ@i+1 (o, )) (a)

15 Viiol,, <0
16: fore=20,...,E — 1 evaluation steps do

17: Take ;tep Vi : ai ~ ”}i("?i)/”i = R(si,ai,ﬁt),siﬂ ~ P(~|s§, ai,ﬁt)
. R L | e . i

18: Vicop =0+ 1

19: t—t+1

20:  end for

21:  for C, rounds do

22: Vi : Broadcast U]i 1 n,i .

23: Vi: ]l {je N:(ij) e &Eomm

exp (UI]<+1 /T}fomm)

24: i: lect a di ~ Pr (a di = ) = X conimn ] i
Vi : Select adopte dopte j ey O (T 7™ Vi€ Ji
) . adoptedi i adoptedi
25: Vitop < 0y Ty S g . o
26: Take step Vi : ay ~ 7r.(-|o}), 1} = R(s}, ap, fit), 54 ~ P([s}, ap, fle); t <t +1
27 end for
28: end for

. L i \N
29: return policies {7ty };Y

Appendix B. Mean-field estimation algorithm for general environments
See Alg. A2.

Appendix C. Mean-field estimation algorithm for visibility-based environments

We give here the differences in our estimation algorithm (Alg. A3) for the subclass of environments

where G applies in place of G, i.e. the mutual observability of agents depends in turn on the

mutual visibility of states. The benefit of gffs over gfhs is that the former allows an agent in state s to
obtain a correct, complete count xy > 0 of all the agents in state s/, for any state s’ that is visible to s
(note the count may be zero). Unique IDs are thus not required as there is no risk of counting the same
agent twice when receiving communicated counts: either all agents in s’ have been counted, or no
count has yet been obtained for s’. This simplifies the algorithm and helps preserve agent anonymity

and privacy.
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Algorithm A2 Mean-field estimation and communication in general settings

Require: Time-dependent observation graph G?**, time-dependent communication graph G,

states {s}})¥ ;, number of communication rounds C,
: Vi, s : Initialise count vector 0}[s] with @

- Vi ﬁ’t[s]] < {IDj}jE./\/:(i,j)thUbs
: forc,in1,...,C, do
Vi : Broadcast ﬁ;,ce
Vi:Ji {jeN:(ij) € gemmy
Vi, s: ﬁ;,(ceﬂ)[s] 0}, [s] U {ﬁ]t,ce [s]}je];'
end for ' '
: Vi : counted_agents} < Zse&ﬁi[s]?@ |0} [s]]

- Vi uncounted_agentsi <~ N — counted_agentsi

uncounted_agentsi

10: Vi, s : fil]s] NS

11: Vi, s where 0i[s] isnot @ : fil[s] + fil[s] + |0§\[IS”

12: return mean-field estimates {7} })¥

Algorithm A3 Mean-field estimation and communication for environments with G

Require: Time-dependent visibility graph G, time-dependent communication graph G states
q P y graph b, P graph b,

{si}N |, number of communication rounds C,
. Vi, s : Initialise count vector 0:[s] with @
: Viand Vs' € 8 : (s},s") € £ 1 0i[s'] « Z}.ele:s{:S, 1
: forceinl,...,C.do

Vi : Broadcast 0

Vi:Ji=iu{jeN:(ij) € Eemm}

Vi,sand Vj € Jj: 0}y [s] < 01, [s]if 0} [s] #D
end for ‘ ‘
1 Vi : counted_agentsi < Yo s.qif 40 0i[s]

Vi uncounted_agentsi — N — counted_agentsi
L\ . i )
10: Vi : unseen_states} <— ZseS:ﬁHs]:(D 1
. % 0i[s]
[s] isnot @ : fi}[s] < =~
. LR uncounted_agentsﬁ
[S] isD: ]/lt[S] = NXllnDbSE}’?}Ed_StﬂtESi

13: return mean-field estimates {fi: 111 1

11: Vi, s where 0

. R

12: Vi, s where 0

Secondly, uncounted agents cannot be in states for which a count has already been obtained, since
the count is complete and correct, even if the count is xy = 0. Therefore after the C, communication
rounds, the uncounted_agents proportion needs to be uniformly distributed only across the positions
in the vector that still have the @ marker (Line 12), and not across all states as in the general setting.
This makes the estimation more accurate in this special setting.

Appendix D. Additional remarks on mean-field estimation algorithms

In our Algs. A2 and A3, agents share their local counts with neighbours on the communication
network G;°"", and only after the C, communication rounds do they complete their estimated distribu-
tion by distributing the uncounted agents along their vectors. An alternative would be for each agent
to immediately form a local estimate from their local count obtained via G or G, which is only then
communicated and updated via the communication network. However, we take the former approach
to avoid poor local estimations spreading through the network and leading to widespread inaccuracies.
Information that is certain (the count) is spread as widely as possible, before being locally converted

into an estimate of the total mean field. The same would be the case in our extension proposed in Sec.
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H for averaging noisy counts, i.e. only the counts would be averaged, with the estimates completed by
distributing the remaining agents after the C, communication rounds.

Appendix E. Proof of Thm. 1

Proof. Recall that before the communication rounds in Line 21 (Alg. A1), the randomly updated
policies {7} H}f\i | have associated approximated returns {0} H}f\i ;- Denote the mean and maximum
of this set o\’!" and o} respectively. Since r{$y is chosen arbitrarily from {rtt H}f\i 1, it will obey
E[a]?j_nlt] = i7" Vk, though there will be high variance. Conversely, the softmax adoptior} probability
(Line 24, Alg. A1) for the networked case means by definition that policies with higher 0} _ ; are more
likely to be adopted at each communication round. Thus the 77¢, that gets adopted by the whole

networked population will obey E[op$4] > o™ (if 7{1™ — 0, it will obey E[o7$}] = o3¢ Vk). As

such, E[o7¢}] > E[og$], which by Ass. 1 implies the result. [

Appendix F. Experiments

Experiments were conducted on a Linux-based machine with 2 x Intel Xeon Gold 6248 CPUs
(40 physical cores, 80 threads total, 55 MiB L3 cache). We use the JAX framework to accelerate and
vectorise our code. Random seeds are set in our code in a fixed way dependent on the trial number to
allow easy replication of experiments.

Appendix F.1. Games

We conduct numerical tests with five games. All are defined by the agents’ reward/transition
functions, and chosen for being particularly amenable to intuitive and visualisable understanding of
whether the agents are learning behaviours that are appropriate and explainable for the respective
objective functions. In all cases, rewards are normalised in [0,1] after they are computed.

Cluster.

This is the inverse of the ‘exploration” game in [20], where in our case agents are encouraged to
gather together by the reward function R(st, ai, fi;) = log(fit(s})). That is, agent i receives a reward
that is logarithmically proportional to the fraction of the population that is co-located with it at time ¢.
We give the population no indication where they should cluster, agreeing this themselves over time.

Agree on a single target. Unlike in the above ‘cluster’ game, the agents are given options of
locations at which to gather, and they must reach consensus among themselves. If the agents are
co-located with one of a number of specified targets ¢ € ® (in our experiments we place one target
in each of the four corners of the grid), and other agents are also at that target, they get a reward
proportional to the fraction of the population found there; otherwise they receive a penalty of -1. In
other words, the agents must coordinate on which of a number of mutually beneficial points will be
their single gathering place. Define the magnitude of the distances between x, y at t as dist; (x,y). The
reward function is given by R(si, ai, fit) = Ttarg (*cotan(fit(s}))), where

x  if3p € Ds.t. dist(si, ) =0

Ttarg(x) =
e —1 otherwise,

x  iff(sl) > 1/N

rcollab<x) = 1 th .
— otherwise.

Evade shark in shoal. Define the magnitude of the horizontal and vertical distances between
x,y at t as dist'(x,y) and dist?(x,y) respectively. The state si now consists of agent i’s position x!
and a ‘shark’s’ position ¢;. At each time step, the shark steps towards the most populated grid
point according to the empirical mean-field distribution i.e. x; = argmax,cs fls(x). A horizontal
step is taken if dist]! (¢, x}) > dist?(¢r, x}), otherwise a vertical step is taken. As well as featuring a
non-stationary distribution, we add ‘common noise’ to the environment, with the shark in a random
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direction with probability 0.01. Such noise that affects the local states of all agents in the same way,
making the evolution of the distribution stochastic, makes population-independent policies sub-
optimal [11]. Agents are rewarded more for being further from the shark, and also for clustering with
other agents. The reward function is given by

R(st, a}, fir) = dist{ (¢r, x1)+
dist} (¢r, x}) + normy;s; (log (11 (x}))),

where normy;; (+) indicates that the final term is normalised to have the same maximum and minimum
values as the total combined vertical and horizontal distance.

Push object to edge. This is similar to the game presented in [30]. As before, define the magnitude
of the horizontal and vertical distances between x,y at t as dist/!(x,y) and dist!(x,y) respectively.
The state si consists of agent i’s position x! and the object’s position ¢:. The number of agents in
the positions surrounding the object at time ¢ generates a probability field around the object, such
that the object is most likely to move in the direction away from the side with the most agents. As
such, if agents are equally distributed around the object, it will be equally likely to move in any
direction, but if they coordinate on choosing the same side, they can “push’ it in a certain direction.
If Edges = {edge!, ... ,edge*} are the grid edges, the closest edge to the object at time f is given by
edge; = arg MineggecEdges (min(dist’f (¢1,edge), dist] (¢, edge)) . Agents are rewarded for how close
they are to the object, and for how close the object is to the edge of the grid, i.e. they must coordinate
on which side of the object from which to “push’ it, to ensure it moves to the grid’s edge. The reward
function is given by

R(s}, ai, fir) = disty (1, xt) + dist] (¢r, x)+
dist! (g1, edge}) + dist? (¢r, edge]).

Disperse. This is similar to the ‘exploration” games in [20], [19] and other MFG works. In our
version agents are rewarded for being located in more sparsely populated areas but only if they are
stationary. The reward function is given by R(s, ai, fi;) = Tsmﬁgnmy(_ﬁf(si))r where

x  ifa} is ‘remain stationary’
Tstationary (x) = 1 oth .
—1 otherwise.

Appendix F.2. Experimental metrics

To give as informative results as possible about both performance and proximity to the MENE, we
provide two metrics for each experiment. Both metrics are plotted with mean and standard deviation,
computed over the ten trials (each with a random seed) of the system evolution in each setting.

Appendix F.2.1. Exploitability

Works on MFGs most commonly use the exploitability metric to evaluate how close a given policy
mt is to a NE policy rr* [11,13,19,20,28,31,32]. The metric usually assumes that all agents are following
the same policy 7, and quantifies how much an agent can benefit by deviating from 7z by measuring
the difference between the return given by 7t and that of a BR policy with respect to the distribution
generated by 7

Definition A1 (Exploitability of 7r). The exploitability Ex of policy 7t is given by:

Ex(rt) = V(BR(I(n)), (7)) — V(r, I(m0)).
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If 7 has a large exploitability then an agent can significantly improve its return by deviating
from 7, meaning that 7t is far from 71*, whereas an exploitability of 0 implies that 7 = 7*. Prior
works conducting empirical testing have generally focused on the centralised setting, so this classical
definition, as well as most evaluations, only consider exploitability when all agents are following a
single policy 71;. However, [13] notes that purely independent agents, as well as networked agents,
may have divergent policies n,’; # n]k Vi,k €1,...,N,asin our own setting. We therefore are interested
in the ‘exploitability” of the population’s joint policy 7 := (7!, ..., 7N) € TIV.

Since we do not have access to the exact BR policy as in some related works [19,20], we must
instead approximate the exploitability, similarly to [13,33]. We freeze the policy of all agents apart
from a deviating agent, for which we store its current policy and then conduct 50 k loops of policy
improvement. To approximate the expectations in Def. A1, we take the best return of the deviating
agent across 10 additional k loops, as well as the mean of all the other agents’ returns across these
same 10 loops. (While the policies of all non-deviating agents is 77; in the centralised case, if the
non-deviating agents do not share a single policy, then this method is in fact approximating the
exploitability of their joint policy 7r;” 4, where d is the deviating agent.) We then revert the agent back
to its stored policy, before learning continues for all agents as per the main algorithm. Due to the
expensive computations required for this metric, we evaluate it every second k iteration of the main
algorithm for Figs. 1(a), 1(b), A1, A2 and A3, and every fourth iteration for the population-dependent
experiments.

The exploitability metric has a number of limitations in our setting. Our approximation takes place
via MOMD policy improvement steps (as in the main algorithm) for an independent, deviating agent
while the policies of the rest of the population are frozen. As such, the quality of our approximation is
limited by the number of policy improvement/expectation rounds, which must be restricted for the
sake of running speed of the experiments. Moreover, since one of the findings of our paper is that
networked agents can improve their policies faster than independent or centralised agents, especially
when non-linear function approximation is used, it is arguably unsurprising that approximating the
BR by an independently deviating agent sometimes gives an unclear and noisy metric. This includes
the exploitability going below zero, which should not be possible if the policies and distributions are
computed exactly.

Moreover, in coordination games (the setting for all games apart from the ‘disperse’ game), agents
benefit by following the same behaviour as others, and so a deviating agent generally stands to gain
less from a BR policy than it might in the non-coordination games on which many other works focus.
For example, the return of a best-responding agent in the “push object’” game still depends on the
extent to which other agents coordinate on which direction in which to push the box, meaning it
cannot significantly increase its return by deviating. This means that the downward trajectory of the
exploitability metric is less clear in our plots than in other works. This is likely why the approximated
exploitability gets lower in the non-coordination ‘disperse” game in Fig. A3 than in the other games.
Given the limitations presented by approximating exploitability, we also provide the second metric to
indicate the progress of learning.

Appendix E2.2. Average discounted return

We record the average discounted return of the agents’ policies 7t, during the M iterations - this
allows us to observe that settings that converge to similar exploitability values may not have similar
average agent returns, suggesting that some algorithms are better than others at finding not just NE,
but preferable NE. See for example Figs. A1l and 1(a), where the networked agents converge to similar
exploitability as the independent and centralised agents, but receive higher average returns.

Appendix F.3. Hyperparameters

See Table Al for our hyperparameter choices. We can group our hyperparameters into those
controlling the size of the experiment, those controlling the size of the Q-network, those controlling the
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Figure A1. ‘Target agreement’ game, population-independent policies, 50x50 grid.

number of iterations of each loop in the algorithms and those affecting the learning/policy updates or
policy adoption.

In our experiments we generally want to demonstrate that our communication-based algorithms
outperform the centralised and independent architectures by allowing policies that are estimated
to be better performing to proliferate through the population, such that convergence occurs within
fewer iterations and computationally faster, even when the Q-function is poorly approximated and/or
the mean field is poorly estimated, as is likely to be the case in on-the-fly, in-situ game learning.
Moreover we want to show that there is a benefit even to a small amount of communication, so
that communication rounds themselves do not excessively add to time complexity. As such, we
generally select hyperparameters at the lowest end of those we tested during development, to show
that our algorithms are particularly successful given what might otherwise be considered “undesirable’
hyperparameter choices.

Appendix F.4. Additional experiments
Appendix F4.1. Additional experiments on large grids

We provide additional experiments on large grids in Figs. A1, A2 and A3.

In the ‘target agreement’ game in Fig. A1, the networked agents generally have lower exploitability
than both centralised and independent agents, and significantly outperform the other architectures in
terms of average return. As before, the margin by which the networked agents can outperform the
centralised agents is much greater than in [13], showing that the benefits of the communication scheme
are even greater in non-tabular settings.

In the ‘cluster’ game in Fig. A2, the networked agents obtain significantly higher return than
the independent agents. While centralised agents have the lowest exploitability, networked agents
of almost all communication radii outperform them in terms of average return, indicating that the
communication scheme helps populations reach better performing equilibria.
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Figure A2. ‘Cluster’ game, population-independent policies, 50x50 grid.

In the “disperse” game in Fig. A3, networked agents significantly outperform independent and
centralised agents in terms of average return. They also outperform centralised agents in terms of
exploitability, and significantly outperform independent agents in terms of exploitability. The fact that
this happens in this non-coordination, competitive game shows that agents do have an incentive to
communicate with each other even if they are self-interested.

Appendix F.4.2. Population-dependent policies in complex environments

We also showcase the ability of our algorithm to handle two more complex games, using
population-dependent policies and estimated mean-field observations.

Figs. A4 and A5, where agents estimate the mean-field distribution via Alg. A3, differ minimally
from Figs. A6 and A7, where agents directly receive the global mean-field distribution. This shows
that our estimation algorithm allows agents to appropriately estimate the distribution, even with
only one round of communication for agents to help each other improve their local counts. Only in
the ‘push object’ game in Fig. A4, and there only with the smaller broadcast radii, do agents slightly
underperform the returns of agents in the global observability case in Fig. A6, as is reasonable.

For the reasons given in Appx. F2.1, the exploitability metric gives limited information in the
‘push object’ game in Fig. A4. In the ‘evade’ game in Fig. A5, exploitability suggests that centralised
learners outperform the other cases. However, all of the networked cases significantly outperform
the independent learners in terms of the average return to which they converge in both games. In the
‘push object’ game networked learners also significantly outperform centralised learners in all but the
case with the smallest broad communication radius, while in the ‘evade’ game all networked cases
perform similarly to the centralised case. Recall though that in realistic game settings a centralised
architecture is a strong assumption, a computational bottleneck and single point of failure.
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Figure A3. ‘Disperse’ game, population-independent policies, 100x100 grid.

Appendix G. Related work

MFGs are a quickly growing research area, so we only discuss the works most closely related
to this present work, and instead refer the reader to [13] for detailed discussion around the setting
of networked communication for MFGs, and to [11] for a broader survey of MFGs. Our work is
most closely related to [13], which introduced networked communication to the infinite-horizon MFG
setting. However, this work focuses only on tabular settings rather than using function approximation
as in ours, and only addresses population-independent policies.

[20] uses Munchausen Online Mirror Descent (MOMD), similar to our method for learning with
neural networks, but there are numerous differences to our setting: most relevantly, they study a
finite-horizon episodic setting, where the mean-field distribution is updated in an exact way and
an oracle supplies a centralised learner with rewards and transitions for it to learn a population-
independent policy. [19] uses MOMD to learn population-dependent policies, albeit also with a
centralised method that exactly updates the mean-field distribution in a finite-horizon episodic setting.
[18] learns population-dependent policies with function approximation in infinite-horizon settings like
our own, but does so in a centralised, two-timescale manner without using the empirical mean-field
distribution. [42] also uses function approximation along a non-episodic trajectory, but involves a
generic single agent learning only with an abstract estimate of the mean field rather than using an
empirical population. Approaches that directly update an approximated mean field must be able to
generate rewards from this arbitrary mean field, even if they otherwise claim to be oracle-free. They are
thus inherently centralised algorithms and rely on strong assumptions that may not apply in realistic,
complex games. Conversely, we are interested in practical convergence in on-the-fly, in-situ settings,
where the reward is computed from the empirical finite population.

[34] addresses decentralised learning from a continuous, non-episodic run of the empirical system
using either full or compressed information about the mean-field distribution, but agents are assumed
to receive this information directly, rather than estimating it locally as in the algorithm we now present.
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Figure A4. ‘Push object’ game, population-dependent policies with estimated mean-field distribution, 10x10 grid.

They also do not consider function approximation or inter-agent communication in their algorithms.
In the closely related but distinct area of Mean-Field RL, [39] does estimate the empirical mean-field
distribution from the local neighbourhood, however agents are seeking to estimate the mean action
rather than the mean-field distribution over states as in our MFG setting. Their agents also do not have
access to a communication network by which they can improve their estimates.

Appendix H. Limitations and future work

Our work follows the gold standard in MFGs by presenting experiments on grid world toy
environments, albeit we show our algorithms are able to handle much larger and more complex games
than prior work. Nevertheless future work lies in moving from these environments to more complex
games. In Sec. 5 we give theoretical results showing that our networked algorithm can outperform
a centralised alternative. We leave more general analysis, such proof of convergence and sample
guarantees in the function approximation setting, for future work.

Alg. A3 assumes that if a state s’ is connected to s on the visibility graph G, an agent in s is
able to accurately count all the agents in ¢/, i.e. it either counts the exact total or cannot observe the
state at all. We assume this for simplicity but it is not inherently the case, since a realistic agent may
have only noisy observations even of others located nearby, due to imperfect perception abilities.
We suggest two ways to deal with this. Firstly, if agents share unique IDs as in Alg. A2, then when
communicating their vectors of collected IDs with each other via Gf*"™, agents would gain the most
accurate picture possible of all the agents that have been observed in a given state. However, as we
note above, there are various reasons why sharing IDs might be undesirable, including privacy and
scalability. If instead only counts are taken, and if the noise on each agents’ count is assumed to be
independent and, for example, subject to a Gaussian distribution, the algorithm can easily be updated
such that communicating agents compute averages of their local and received counts to improve their

accuracy, rather than simply using communication to fill in counts for previously unobserved states.
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Figure A5. ‘Evade’ game, population-dependent policies with estimated mean-field distribution, 10x10 grid.

(Note that we can also consider the original case without noise to involve averaging, since averaging
identical values equates to using the original value). Since the algorithm is intended to aid in local
estimation of the mean-field distribution, which is inherently approximate due to the uniform method
for distributing the uncounted agents, we are not concerned with reaching exact consensus between
agents on the communicated counts, so we do not require repeated averaging to ensure asymptotic
convergence.

We may wish to consider more sophisticated methods for distributing the uncounted agents
across states, in place of the current uniform distribution. Such choices may be domain-specific based
on knowledge of a particular environment. For example, one might use the counts to perform Bayesian
updates on a specific prior, where this prior may relate to the estimated mean-field distribution at the
previous time step t — 1. If agents seek to learn to predict the evolution of the mean field based on their
own policy or by learning a model, the Bayesian prior may also be based on forward prediction from
the estimated mean-field distribution at t — 1. Future work lies in conducting experiments in all of
these more general settings.

[18] notes that in grid-world settings such as those in our experiments, passing the (estimated or
true global) mean-field distribution as a flat vector to the Q-network ignores the geometric structure of
the problem. They therefore propose to create an embedding of the distribution by first passing the
vector to a convolutional neural network, essentially treating the categorical distribution as an image.
This technique is also followed in [19] (for their additional experiments, but not in the main body of
their paper). As future work, we can test whether such a method improves the performance of our
algorithms.
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Hyperparam.| Value | Comment

Trials 10 We run 10 trials with different random seeds for each experiment. We plot the mean
and standard deviation for each metric across the trials.

Gridsize 10x10 / | Experiments with population-dependent policies are run on the 10x10 grid (Figs. A4,
50x50 / | A5, A6 and A7), while experiments on large state spaces are run on 50x50 and 100x100
100x100 | grids (Figs. 1(a), 1(b), A1, A2 and A3).

Population | 500 We chose 500 for our demonstrations to show that our algorithm can handle large
populations, indeed often larger than those demonstrated in other mean-field works,
especially for grid-world environments, while also being feasible to simulate wrt. time
and computation constraints [13,19,29,34-41].

Number of | cf. The agent’s position is represented by two concatenated one-hot vectors indicating

neurons in | com- the agent’s row and column. An additional two such vectors are added for the

input layer | ment shark’s/object’s position in the ‘evade’” and "push object” games. For population-
dependent policies, the mean-field distribution is a flattened vector of the same
size as the grid. As such, the input size in the ‘evade’ and "push object’ games is
[(4 x dimension) 4 (dimension?)]; in the other settings it is [2 x dimension].

Neurons cf. We draw inspiration from common rules of thumb when selecting the number of neurons

per hidden | com- in hidden layers, e.g. it should be between the number of input neurons and output

layer ment neurons / it should be 2/3 the size of the input layer plus the size of the output layer /
it should be a power of 2 for computational efficiency. Using these rules of thumb as
rough heuristics, we select the number of neurons per hidden layer by rounding the size
of the input layer down to the nearest power of 2. The layers are all fully connected.

Hidden lay- | 2 We experimented with 2 and 3 hidden layers in the Q-networks. While 3 hidden layers

ers gave similar or slighly better performance, we selected 2 for increased computational
speed for conducting our experiments.

Activation | ReLU | This is a common choice in deep RL.

function

K 100 K is chosen to be large enough to see at least one of the metrics converging.

M 50 We tested M in {50,100} and found that the lower value was sufficient to achieve conver-
gence while minimising training time. It may be possible to converge with even smaller
choices of M.

L 50 We tested L in {50,100} and found that the lower value was sufficient to achieve conver-
gence while minimising training time. It may be possible to converge with even smaller
choices of L.

E 20 We tested E in {20,50,100}, and choose the lowest value to show the benefit to conver-
gence even from very few evaluation steps. It may be possible to reduce this value
further and still achieve similar results.

Cp 1 As in [13], we choose this value to show the convergence benefits brought by even a
single communication round, even in networks that may have limited connectivity;
higher choices are likely to have even better performance.

Ce 1 Similar to Cp, we choose this value to show the ability of our algorithm to appropriately
estimate the mean field even with only a single communication round, even in networks
that may have limited connectivity.

0% 0.9 Standard choice across RL literature.

T 0.03 We tested 7, in {0.01,0.02,0.03,0.04,0.05}, as well as linearly decreasing 7, from 0.05 — 0
as k increases. However, only 0.03 gave stable increase in return. Note that this is the
value also chosen in [21].

|B 32 This is a common choice of batch size that trades off noisy updates and computational
efficiency.

cl -1 We use the same value as in [21].

v L—-1 We tested v in {1,4,20,L — 1}. We found that in our setting, updating 6’ <— 6 once
per k iteration s.t. 6] 117 = Ok VI gave sufficient learning that was similar to the other
potential choices of v, so we do this for simplicity, rather than arbitrarily choosing a
frequency to update 8’ during each k loop. Setting the target to be the policy from the
previous iteration is similar to the method in [20]. Whilst [19] updates the target within
the L loops for stability, we do not find this to be a problem in our experiments.

Optimiser Adam | Asin [21], we use the Adam optimiser with initial learning rate 0.01.

T cf. T.”"" increases linearly from 0.001 to 1 across the K iterations. This is a simplification of
com- the annealing scheme used in [13]. Further optimising the annealing process may lead
ment to better results.

Table Al. Hyperparameters
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